PLI computes the Perturbed-Law based Indices (PLI), also known as the Density Modification Based Reliability Sensitivity Indices (DMBRSI), which are robustness indices related to a probability of exceedence of a model output (i.e. a failure probability), estimated by a Monte Carlo method. See Lemaitre et al. (2015).
PLI(failurepoints,failureprobabilityhat,samplesize,deltasvector,
InputDistributions,type="MOY",samedelta=TRUE)
install.packages("sensitivity", repo="http://cran.r-project.org", dep=T)
library(sensitivity)
# Model: Ishigami function with a treshold at -7
# Failure points are those < -7
distributionIshigami = list()
for (i in 1:3){
distributionIshigami[[i]]=list("unif",c(-pi,pi))
distributionIshigami[[i]]$r=("runif")
}
# Monte Carlo sampling to obtain failure points
N = 10^5
X = matrix(0,ncol=3,nrow=N)
for( i in 1:3){
X[,i] = runif(N,-pi,pi)
}
T = ishigami.fun(X)
s = sum(as.numeric(T < -7)) # Number of failure
pdefchap = s/N # Failure probability
ptsdef = X[T < -7,] # Failure points
# sensitivity indices with perturbation of the mean
v_delta = seq(-3,3,1/20)
Toto = PLI(failurepoints=ptsdef,failureprobabilityhat=pdefchap,samplesize=N,
deltasvector=v_delta,InputDistributions=distributionIshigami,type="MOY",
samedelta=TRUE)
BIshm = Toto[[1]]
SIshm = Toto[[2]]
par(mar=c(4,5,1,1))
plot(v_delta,BIshm[,2],ylim=c(-4,4),xlab=expression(delta),
ylab=expression(hat(PLI[i*delta])),pch=19,cex=1.5)
points(v_delta,BIshm[,1],col="darkgreen",pch=15,cex=1.5)
points(v_delta,BIshm[,3],col="red",pch=17,cex=1.5)
lines(v_delta,BIshm[,2]+1.96*SIshm[,2],col="black");
lines(v_delta,BIshm[,2]-1.96*SIshm[,2],col="black")
lines(v_delta,BIshm[,1]+1.96*SIshm[,1],col="darkgreen");
lines(v_delta,BIshm[,1]-1.96*SIshm[,1],col="darkgreen")
lines(v_delta,BIshm[,3]+1.96*SIshm[,3],col="red");
lines(v_delta,BIshm[,3]-1.96*SIshm[,3],col="red");
abline(h=0,lty=2)
legend(0,3,legend=c("X1","X2","X3"),
col=c("darkgreen","black","red"),pch=c(15,19,17),cex=1.5)
# sensitivity indices with perturbation of the variance
v_delta = seq(1,5,1/4) # user parameter. (the true variance is 3.29)
Toto = PLI(failurepoints=ptsdef,failureprobabilityhat=pdefchap,samplesize=N,
deltasvector=v_delta,InputDistributions=distributionIshigami,type="VAR",
samedelta=TRUE)
BIshv=Toto[[1]]
SIshv=Toto[[2]]
par(mfrow=c(2,1),mar=c(1,5,1,1)+0.1)
plot(v_delta,BIshv[,2],ylim=c(-.5,.5),xlab=expression(V_f),
ylab=expression(hat(PLI[i*delta])),pch=19,cex=1.5)
points(v_delta,BIshv[,1],col="darkgreen",pch=15,cex=1.5)
points(v_delta,BIshv[,3],col="red",pch=17,cex=1.5)
lines(v_delta,BIshv[,2]+1.96*SIshv[,2],col="black");
lines(v_delta,BIshv[,2]-1.96*SIshv[,2],col="black")
lines(v_delta,BIshv[,1]+1.96*SIshv[,1],col="darkgreen");
lines(v_delta,BIshv[,1]-1.96*SIshv[,1],col="darkgreen")
lines(v_delta,BIshv[,3]+1.96*SIshv[,3],col="red");
lines(v_delta,BIshv[,3]-1.96*SIshv[,3],col="red");
par(mar=c(4,5.1,1.1,1.1))
plot(v_delta,BIshv[,2],ylim=c(-30,.7),xlab=expression(V[f]),
ylab=expression(hat(PLI[i*delta])),pch=19,cex=1.5)
points(v_delta,BIshv[,1],col="darkgreen",pch=15,cex=1.5)
points(v_delta,BIshv[,3],col="red",pch=17,cex=1.5)
lines(v_delta,BIshv[,2]+1.96*SIshv[,2],col="black");
lines(v_delta,BIshv[,2]-1.96*SIshv[,2],col="black")
lines(v_delta,BIshv[,1]+1.96*SIshv[,1],col="darkgreen");
lines(v_delta,BIshv[,1]-1.96*SIshv[,1],col="darkgreen")
lines(v_delta,BIshv[,3]+1.96*SIshv[,3],col="red");
lines(v_delta,BIshv[,3]-1.96*SIshv[,3],col="red");
legend(2.5,-10,legend=c("X1","X2","X3"),col=c("darkgreen","black","red"),
pch=c(15,19,17),cex=1.5)
Return Values:
• A matrix where the PLI are stored. Each column corresponds to an input, each line corresponds to a twist of amplitude delta.
• A matrix where their standard deviation are stored.
See Also: