R PLI


PLI computes the Perturbed-Law based Indices (PLI), also known as the Density Modification Based Reliability Sensitivity Indices (DMBRSI), which are robustness indices related to a probability of exceedence of a model output (i.e. a failure probability), estimated by a Monte Carlo method. See Lemaitre et al. (2015).

PLI is located in package sensitivity. Please install and load package sensitivity before use.


PLI(failurepoints,failureprobabilityhat,samplesize,deltasvector,
InputDistributions,type="MOY",samedelta=TRUE)

failurepoints
a matrix of failure points coordinates, one column per variable.
failureprobabilityhat
the estimation of failure probability P through rough Monte Carlo method.
samplesize
the size of the sample used to estimate P. One must have Pchap=dim(failurepoints)[1]/samplesize
deltasvector
a vector containing the values of delta for which the indices will be computed.
InputDistributions
a list of list. Each list contains, as a list, the name of the distribution to be used and the parameters. Implemented cases so far:
  • For a mean perturbation: Gaussian, Uniform, Triangle, Left Trucated Gaussian, Left Truncated Gumbel. Using Gumbel requires the package evd.
  • For a variance perturbation: Gaussian, Uniform.
type
a character string in which the user will specify the type of perturbation wanted. The sense of "deltasvector" varies according to the type of perturbation:
  • type can take the value "MOY",in which case deltasvector is a vector of perturbated means.
  • type can take the value "VAR",in which case deltasvector is a vector of perturbated variances, therefore needs to be positive integers.
samedelta
a boolean used with the value "MOY" for type.
  • If it is set at TRUE, the mean perturbation will be the same for all the variables.
  • If not, the mean perturbation will be new_mean = mean+sigma*delta where mean, sigma are parameters defined in InputDistributions and delta is a value of deltasvector.


install.packages("sensitivity", repo="http://cran.r-project.org", dep=T)
library(sensitivity)
# Model: Ishigami function with a treshold at -7
# Failure points are those < -7

distributionIshigami = list()
for (i in 1:3){
distributionIshigami[[i]]=list("unif",c(-pi,pi))
distributionIshigami[[i]]$r=("runif")
}

# Monte Carlo sampling to obtain failure points

N = 10^5
X = matrix(0,ncol=3,nrow=N)
for( i in 1:3){
X[,i] = runif(N,-pi,pi)
}

T = ishigami.fun(X)
s = sum(as.numeric(T < -7)) # Number of failure
pdefchap = s/N      # Failure probability
ptsdef = X[T < -7,]	# Failure points

# sensitivity indices with perturbation of the mean

v_delta = seq(-3,3,1/20)
Toto = PLI(failurepoints=ptsdef,failureprobabilityhat=pdefchap,samplesize=N,
deltasvector=v_delta,InputDistributions=distributionIshigami,type="MOY",
samedelta=TRUE)
BIshm = Toto[[1]]
SIshm = Toto[[2]]

par(mar=c(4,5,1,1))
plot(v_delta,BIshm[,2],ylim=c(-4,4),xlab=expression(delta),
ylab=expression(hat(PLI[i*delta])),pch=19,cex=1.5)
points(v_delta,BIshm[,1],col="darkgreen",pch=15,cex=1.5)
points(v_delta,BIshm[,3],col="red",pch=17,cex=1.5)
lines(v_delta,BIshm[,2]+1.96*SIshm[,2],col="black");
lines(v_delta,BIshm[,2]-1.96*SIshm[,2],col="black")
lines(v_delta,BIshm[,1]+1.96*SIshm[,1],col="darkgreen");
lines(v_delta,BIshm[,1]-1.96*SIshm[,1],col="darkgreen")
lines(v_delta,BIshm[,3]+1.96*SIshm[,3],col="red");
lines(v_delta,BIshm[,3]-1.96*SIshm[,3],col="red");
abline(h=0,lty=2)
legend(0,3,legend=c("X1","X2","X3"),
col=c("darkgreen","black","red"),pch=c(15,19,17),cex=1.5)

# sensitivity indices with perturbation of the variance

v_delta = seq(1,5,1/4) # user parameter. (the true variance is 3.29)
Toto = PLI(failurepoints=ptsdef,failureprobabilityhat=pdefchap,samplesize=N,
deltasvector=v_delta,InputDistributions=distributionIshigami,type="VAR",
samedelta=TRUE)
BIshv=Toto[[1]]
SIshv=Toto[[2]]

par(mfrow=c(2,1),mar=c(1,5,1,1)+0.1)
plot(v_delta,BIshv[,2],ylim=c(-.5,.5),xlab=expression(V_f),
ylab=expression(hat(PLI[i*delta])),pch=19,cex=1.5)
points(v_delta,BIshv[,1],col="darkgreen",pch=15,cex=1.5)
points(v_delta,BIshv[,3],col="red",pch=17,cex=1.5)
lines(v_delta,BIshv[,2]+1.96*SIshv[,2],col="black");
lines(v_delta,BIshv[,2]-1.96*SIshv[,2],col="black")
lines(v_delta,BIshv[,1]+1.96*SIshv[,1],col="darkgreen");
lines(v_delta,BIshv[,1]-1.96*SIshv[,1],col="darkgreen")
lines(v_delta,BIshv[,3]+1.96*SIshv[,3],col="red");
lines(v_delta,BIshv[,3]-1.96*SIshv[,3],col="red");

par(mar=c(4,5.1,1.1,1.1))
plot(v_delta,BIshv[,2],ylim=c(-30,.7),xlab=expression(V[f]),
ylab=expression(hat(PLI[i*delta])),pch=19,cex=1.5)
points(v_delta,BIshv[,1],col="darkgreen",pch=15,cex=1.5)
points(v_delta,BIshv[,3],col="red",pch=17,cex=1.5)
lines(v_delta,BIshv[,2]+1.96*SIshv[,2],col="black");
lines(v_delta,BIshv[,2]-1.96*SIshv[,2],col="black")
lines(v_delta,BIshv[,1]+1.96*SIshv[,1],col="darkgreen");
lines(v_delta,BIshv[,1]-1.96*SIshv[,1],col="darkgreen")
lines(v_delta,BIshv[,3]+1.96*SIshv[,3],col="red");
lines(v_delta,BIshv[,3]-1.96*SIshv[,3],col="red");
legend(2.5,-10,legend=c("X1","X2","X3"),col=c("darkgreen","black","red"),
pch=c(15,19,17),cex=1.5)

Return Values: PLI returns a list of size 2, including:


   •  A matrix where the PLI are stored. Each column corresponds to an input, each line corresponds to a twist of amplitude delta.


   •  A matrix where their standard deviation are stored.


See Also: PLIquantile, PLIquantile_multivar, PLIsuperquantile


References:
P. Lemaitre, E. Sergienko, A. Arnaud, N. Bousquet, F. Gamboa and B. Iooss, Density modification based reliability sensitivity analysis, Journal of Statistical Computation and Simulation, 85:1200-1223.

E. Borgonovo and B. Iooss, 2017, Moment independent importance measures and a common rationale, In: Springer Handbook on UQ, R. Ghanem, D. Higdon and H. Owhadi (Eds).


endmemo.com © 2025
Terms of Use | Privacy | Home