lm()
is a linear model function, such like linear regression analysis.
lm(formula, data, subset, weights, ...)
formula
: model description, such as x ~ y
data
: optional, variables in the model
subset
: optional, a subset vector of observations to be used in the fitting process
weights
: optional, a vector of weights to be used in the fitting process
Let's create two vectors, and then fit a linear model:
>x <- c(rep(1:20)) >y <- x * 2 >f <- lm(x ~ y) >f
Call: lm(formula = x ~ y) Coefficients: (Intercept) y -4.766e-15 5.000e-01
We can use summary()
to see the details:
>summary(f)
Call: lm(formula = x ~ y) Residuals: Min 1Q Median 3Q Max -6.208e-15 8.400e-18 3.526e-16 6.074e-16 2.038e-15 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) -4.766e-15 7.696e-16 -6.193e+00 7.6e-06 *** y 5.000e-01 3.212e-17 1.557e+16 < 2e-16 *** --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 1.657e-15 on 18 degrees of freedom Multiple R-squared: 1, Adjusted R-squared: 1 F-statistic: 2.423e+32 on 1 and 18 DF, p-value: < 2.2e-16
Let's plot the results:
>plot(f)